Telegram Group & Telegram Channel
Tree of Thoughts [2023] - заставляем GPT исследовать чертоги своего разума

Поговорим о разных видах взаимодействия с LLM.
1) Базовый - составляем запрос с задачей в модель, получаем ответ на выходе
2) Chain of Thoughts - просим модель описывать пошагово ход решения задачи и рассуждения, и в конце ответ.
3) Iterative refinement - В течение нескольких запросов, просим модель критиковать и улучшать решение.
4) В случае, если нам нужен ответ на задачу, в которой применимо ансамблирование ответов, можно запускать предыдущие методы несколько раз и потом комбинировать их ответы в один финальный

В статье авторы изобретают ещё более хитрый способ заставить модель анализировать. Мы генерируем дерево мыслей. Корень - это изначальная задача, а дети любой вершины - это добавление к рассуждению какой-то мысли. Данное дерево можно растить, посылая в LLM запрос вида "придумай следующий шаг к решению", и подавая текущее состояние на вход.

Как оценивать качество вершины? Используем саму же LLM, веря, что модель с оценкой мыслей справляется лучше, чем с их генерацией. Таким образом, мы можем каким-нибудь алгоритмом обхода дерева с эвристиками искать в нём решение, в котором шаги решения будут высоко оценены моделью. Я думаю, что детали тут слишком быстро устареют и конкретный алгоритм нам не важен.

Что по результатам? Они не радикально выше, но, видимо, схема помогает решать некоторые задачи, в которых такое "поисковое мышление" уместно. Например, большой буст наблюдается в решении мини-кроссвордов, т.е. заполнении буквами сетку 5 на 5 согласно вопросам. Классический способ решения подразумевает как раз поиск по дереву, так что прирост от подхода ожидаем.

Возможно, что со временем мы придём к какой-то black-box абстракции над LLM, где схема промптинга станет частью скрытой от пользователя реализации, и подобные алгоритмы конструирования ответа станут весьма сложными. А вы как думали, сверхсильный-ИИ-GPT возьмёт и расскажет всё просто так?

Получасовой обзор статьи

@knowledge_accumulator



tg-me.com/knowledge_accumulator/76
Create:
Last Update:

Tree of Thoughts [2023] - заставляем GPT исследовать чертоги своего разума

Поговорим о разных видах взаимодействия с LLM.
1) Базовый - составляем запрос с задачей в модель, получаем ответ на выходе
2) Chain of Thoughts - просим модель описывать пошагово ход решения задачи и рассуждения, и в конце ответ.
3) Iterative refinement - В течение нескольких запросов, просим модель критиковать и улучшать решение.
4) В случае, если нам нужен ответ на задачу, в которой применимо ансамблирование ответов, можно запускать предыдущие методы несколько раз и потом комбинировать их ответы в один финальный

В статье авторы изобретают ещё более хитрый способ заставить модель анализировать. Мы генерируем дерево мыслей. Корень - это изначальная задача, а дети любой вершины - это добавление к рассуждению какой-то мысли. Данное дерево можно растить, посылая в LLM запрос вида "придумай следующий шаг к решению", и подавая текущее состояние на вход.

Как оценивать качество вершины? Используем саму же LLM, веря, что модель с оценкой мыслей справляется лучше, чем с их генерацией. Таким образом, мы можем каким-нибудь алгоритмом обхода дерева с эвристиками искать в нём решение, в котором шаги решения будут высоко оценены моделью. Я думаю, что детали тут слишком быстро устареют и конкретный алгоритм нам не важен.

Что по результатам? Они не радикально выше, но, видимо, схема помогает решать некоторые задачи, в которых такое "поисковое мышление" уместно. Например, большой буст наблюдается в решении мини-кроссвордов, т.е. заполнении буквами сетку 5 на 5 согласно вопросам. Классический способ решения подразумевает как раз поиск по дереву, так что прирост от подхода ожидаем.

Возможно, что со временем мы придём к какой-то black-box абстракции над LLM, где схема промптинга станет частью скрытой от пользователя реализации, и подобные алгоритмы конструирования ответа станут весьма сложными. А вы как думали, сверхсильный-ИИ-GPT возьмёт и расскажет всё просто так?

Получасовой обзор статьи

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/76

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Knowledge Accumulator from br


Telegram Knowledge Accumulator
FROM USA